organic compounds

 $0.22 \times 0.18 \times 0.14 \ \mathrm{mm}$

21787 measured reflections

5605 independent reflections

3985 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.064$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triethylammonium 4-nitrobenzenesulfonate

Mohammad T. M. Al-Dajani,^a Hassan H. Abdallah,^b Nornisah Mohamed,^a‡ Ching Kheng Quah^c§ and Hoong-Kun Fun^c*¶

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 1 June 2010; accepted 4 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.135; data-to-parameter ratio = 21.5.

In the anion of the title molecular salt, $C_6H_{16}N^+$ · $C_6H_4O_5S^-$, the nitro group is twisted slightly from the benzene ring, making a dihedral angle of 3.16 (10)°. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to the *ab* plane by C–H···O and N–H···O hydrogen bonds.

Related literature

For general background to and the synthesis of the title compound, see: Dann & Davies (1929); D'Souza *et al.* (2008); Hunig *et al.* (1965); Kim *et al.* (1999). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For a related structure, see: Quah *et al.* (2008).

Experimental

Crystal data

$C_6H_{16}N^+ \cdot C_6H_4NO_5S^-$
$M_r = 304.36$
Orthorhombic, Pbca
a = 7.8015 (14) Å

b = 12.669 (2) Å c = 29.910 (6) Å $V = 2956.3 (9) \text{ Å}^3$ Z = 8

‡ Additional correspondence author, e-mail: nornisah@usm.my.

Mo $K\alpha$ radiation	
$\mu = 0.24 \text{ mm}^{-1}$	

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.950, T_{\rm max} = 0.967$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 261 \text{ parameters} \\ wR(F^2) &= 0.135 & \text{All H-atom parameters refined} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 0.55 \text{ e} \text{ Å}^{-3} \\ 5605 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.47 \text{ e} \text{ Å}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H1N2 \cdots O4 \\ C2 - H2A \cdots O5^{i} \\ C7 - H7B \cdots O4^{ii} \\ C10 - H10B \cdots O3^{iii} \\ C12 - H12A \cdots O5^{iii} \end{array}$	0.95 (2) 0.96 (2) 1.00 (2) 0.96 (2) 0.99 (2)	1.86 (2) 2.485 (19) 2.50 (2) 2.59 (2) 2.60 (2)	2.7899 (17) 3.1000 (19) 3.4081 (19) 3.461 (2) 3.559 (2)	166 (2) 121.7 (14) 151.3 (16) 151.1 (18) 164.1 (16)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (iii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors gratefully acknowledge funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/ PFIZIK/811012). CKQ also thanks USM for the award of a USM Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2392).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dann, A. T. & Davies, W. (1929). J. Chem. Soc. pp. 1050-1058.
- D'Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci. 9, 914– 925.
- Hunig, S., Muller, H. R. & Their, W. (1965). Angew. Chem. Int. Ed. Engl. 4, 271–279.
- Kim, Y. H., Jung, J. C., Choi, H. C. & Yang, S. G. (1999). Pure Appl. Chem. 71, 377–384.

Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[§] Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2010). E66, o1647 [doi:10.1107/S1600536810021379]

Triethylammonium 4-nitrobenzenesulfonate

M. T. M. Al-Dajani, H. H. Abdallah, N. Mohamed, C. K. Quah and H.-K. Fun

Comment

Aromatic nitro sulfonyl compounds are very important since they can be used as raw materials for the manufacture of sulfanilamide preparations. *o*-Nitrobenzenesulfonylhydrazide (NBSH) is a very important reagent for the synthesis of allenes from propargylic alcohols. The preparation of NBSH from *o*-nitrobenzenesulfonyl chloride and hydrazine in benzene was described in 1929 by Dann and Davies (Dann & Davies, 1929; D'Souza *et al.*, 2008; Hunig *et al.*, 1965; Kim *et al.*, 1999).

The asymmetric unit (Fig. 1) of the title compound contains one triethylammonium cation and one 4-nitrobenzenesulfonate anion. A proton transfer from the sulfonic acid group of 4-nitrobenzenesulfonic acid to atom N2 of triethylamine resulted in the formation of ions. In the anion, the nitro group is twisted slightly from the attached ring; the dihedral angle between the C1—C6 and O1/O2/N1/C1 planes is $3.16 (10)^\circ$. The bond lengths and angles in the 4-nitrobenzenesulfonate anion are within normal ranges and similar to those in a comparable crystal structure (Quah *et al.*, 2008). In the crystal structure, the cations and anions are linked to form a two-dimensional network (Fig. 2) parallel to the *ab*-plane by C—H···O and N—H···O hydrogen bonds (Table 1).

Experimental

4-Nitrobenzenesulfonyl chloride (0.01 mol, 2.05 g) was dissolved in 25 ml of tetrahydrofuran (THF) in a round-bottomed flask with stirring. Triethylamine (0.01 mol, 0.70 g) was mixed with some THF and added to the flask dropwise with stirring. The reaction mixture was refluxed for 2.5 h and left at room temperature overnight. The needle crystals that were formed were then filtered off, washed with water and dried at 353 K.

Refinement

All H atoms were located in a difference Fourier map and refined freely [N2-H1N2 = 0.95 (2) Å and C-H = 0.92 (3) - 1.03 (2) Å].

Figures

Fig. 1. The structures of the two ions of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Triethylammonium 4-nitrobenzenesulfonate

Crystal	data
---------	------

$C_6H_{16}N^+ \cdot C_6H_4NO_5S^-$	F(000) = 1296
$M_r = 304.36$	$D_{\rm x} = 1.368 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 2801 reflections
a = 7.8015 (14) Å	$\theta = 2.7 - 30.9^{\circ}$
b = 12.669 (2) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 29.910 (6) Å	T = 100 K
$V = 2956.3 (9) \text{ Å}^3$	Block, yellow
Z = 8	$0.22\times0.18\times0.14~mm$

Data collection

5605 independent reflections
3985 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.064$
$\theta_{\text{max}} = 33.2^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
$h = -8 \rightarrow 12$
$k = -9 \rightarrow 19$
$l = -40 \rightarrow 46$

Refinement

Refinement on F^2 Primary atom site location: structure-invariant d methods	irect
Least-squares matrix: full Secondary atom site location: difference Fourier	map
$R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from neighbour sites	ing
$wR(F^2) = 0.135$ All H-atom parameters refined	
S = 1.01 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0731P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	
5605 reflections $(\Delta/\sigma)_{max} < 0.001$	
261 parameters $\Delta \rho_{\text{max}} = 0.55 \text{ e} \text{ Å}^{-3}$	
0 restraints $\Delta \rho_{\min} = -0.47 \text{ e } \text{\AA}^{-3}$	

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.38577 (5)	0.17193 (3)	0.095990 (11)	0.01330 (9)
01	0.2417 (3)	-0.17343 (11)	0.26000 (4)	0.0524 (5)
02	0.37185 (19)	-0.05239 (12)	0.29767 (4)	0.0372 (3)
03	0.25347 (14)	0.13583 (9)	0.06573 (3)	0.0195 (2)
O4	0.55993 (14)	0.14889 (8)	0.07988 (3)	0.0172 (2)
05	0.36886 (15)	0.28080 (8)	0.11063 (4)	0.0206 (2)
N1	0.3145 (2)	-0.08793 (12)	0.26271 (4)	0.0265 (3)
C1	0.3331 (2)	-0.02431 (12)	0.22174 (5)	0.0184 (3)
C2	0.2606 (2)	-0.06215 (11)	0.18258 (5)	0.0174 (3)
C3	0.27633 (19)	-0.00053 (11)	0.14418 (5)	0.0157 (3)
C4	0.36392 (18)	0.09467 (10)	0.14563 (4)	0.0134 (2)
C5	0.4376 (2)	0.13060 (12)	0.18557 (5)	0.0187 (3)
C6	0.4220 (2)	0.07070 (13)	0.22423 (5)	0.0214 (3)
N2	0.79571 (17)	0.31410 (9)	0.08449 (4)	0.0151 (2)
C7	0.7094 (2)	0.42076 (11)	0.08501 (5)	0.0192 (3)
C8	0.6060 (2)	0.44251 (13)	0.04323 (6)	0.0239 (3)
С9	0.8950 (2)	0.29787 (13)	0.12722 (5)	0.0212 (3)
C10	0.9187 (2)	0.18278 (14)	0.13903 (6)	0.0242 (3)
C11	0.9015 (2)	0.29386 (12)	0.04305 (5)	0.0166 (3)
C12	1.0456 (2)	0.37245 (13)	0.03620 (5)	0.0206 (3)
H2A	0.195 (3)	-0.1264 (16)	0.1819 (6)	0.023 (5)*
H3A	0.215 (3)	-0.0242 (14)	0.1159 (6)	0.021 (5)*
H5A	0.498 (3)	0.2009 (16)	0.1862 (6)	0.022 (5)*
H6A	0.471 (3)	0.0962 (17)	0.2514 (7)	0.035 (6)*
H7A	0.641 (3)	0.4184 (16)	0.1120 (7)	0.027 (5)*
H7B	0.807 (3)	0.4712 (16)	0.0893 (6)	0.020 (5)*
H8A	0.679 (3)	0.4491 (16)	0.0171 (6)	0.027 (5)*
H8B	0.517 (3)	0.3859 (17)	0.0374 (7)	0.028 (5)*
H8C	0.529 (3)	0.5072 (17)	0.0482 (7)	0.028 (5)*
H9A	1.007 (3)	0.3338 (14)	0.1233 (6)	0.020 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9B	0.830 (3)	0.3364 (16)	0.1497 (7)	0.027 (5)*
H10A	0.981 (3)	0.1804 (17)	0.1669 (8)	0.039 (6)*
H10B	0.989 (3)	0.1457 (18)	0.1178 (7)	0.036 (6)*
H10C	0.817 (4)	0.147 (2)	0.1432 (7)	0.042 (6)*
H11A	0.825 (3)	0.2928 (14)	0.0187 (6)	0.014 (4)*
H11B	0.954 (3)	0.2213 (15)	0.0474 (6)	0.016 (4)*
H12A	1.143 (3)	0.3620 (15)	0.0569 (6)	0.021 (5)*
H12B	1.008 (3)	0.4425 (17)	0.0365 (6)	0.026 (5)*
H12C	1.100 (3)	0.3593 (19)	0.0071 (8)	0.036 (6)*
H1N2	0.702 (3)	0.2662 (15)	0.0832 (6)	0.017 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01496 (15)	0.01173 (14)	0.01322 (16)	0.00071 (12)	-0.00004 (11)	0.00010 (10)
01	0.0965 (15)	0.0357 (8)	0.0251 (7)	-0.0290 (9)	-0.0008 (8)	0.0093 (5)
02	0.0421 (8)	0.0529 (9)	0.0166 (6)	-0.0118 (7)	-0.0060 (5)	0.0093 (5)
03	0.0202 (5)	0.0233 (5)	0.0152 (5)	-0.0025 (4)	-0.0050 (4)	0.0020 (4)
04	0.0169 (5)	0.0156 (4)	0.0191 (5)	0.0004 (4)	0.0036 (4)	-0.0003 (4)
05	0.0293 (6)	0.0124 (4)	0.0199 (5)	0.0041 (4)	0.0022 (4)	-0.0009 (4)
N1	0.0325 (8)	0.0300 (7)	0.0170 (6)	-0.0024 (6)	0.0024 (6)	0.0060 (5)
C1	0.0217 (7)	0.0208 (6)	0.0127 (6)	0.0010 (6)	0.0023 (5)	0.0034 (5)
C2	0.0213 (7)	0.0147 (6)	0.0163 (6)	-0.0011 (6)	0.0024 (5)	-0.0002 (5)
C3	0.0182 (6)	0.0154 (6)	0.0135 (6)	0.0005 (5)	0.0006 (5)	-0.0010 (4)
C4	0.0138 (6)	0.0139 (5)	0.0126 (6)	0.0020 (5)	0.0004 (5)	-0.0007 (4)
C5	0.0218 (7)	0.0177 (6)	0.0165 (7)	-0.0038 (6)	-0.0013 (5)	-0.0013 (5)
C6	0.0248 (8)	0.0255 (7)	0.0139 (6)	-0.0031 (6)	-0.0035 (6)	-0.0012 (5)
N2	0.0185 (6)	0.0132 (5)	0.0136 (5)	-0.0021 (5)	0.0002 (4)	0.0006 (4)
C7	0.0242 (7)	0.0130 (6)	0.0203 (7)	0.0007 (6)	0.0035 (6)	-0.0009 (5)
C8	0.0271 (8)	0.0218 (7)	0.0229 (8)	0.0061 (7)	0.0008 (6)	0.0042 (6)
С9	0.0294 (8)	0.0224 (7)	0.0119 (6)	-0.0032 (6)	-0.0020 (6)	0.0014 (5)
C10	0.0215 (8)	0.0275 (8)	0.0234 (8)	0.0041 (7)	-0.0023 (6)	0.0059 (6)
C11	0.0215 (7)	0.0165 (6)	0.0117 (6)	0.0018 (6)	0.0004 (5)	-0.0013 (5)
C12	0.0199 (7)	0.0234 (7)	0.0183 (7)	-0.0008 (6)	0.0025 (6)	0.0018 (5)

Geometric parameters (Å, °)

1.4468 (11)	N2—H1N2	0.95 (2)
1.4531 (11)	С7—С8	1.513 (2)
1.4709 (11)	С7—Н7А	0.97 (2)
1.7865 (14)	С7—Н7В	1.00 (2)
1.226 (2)	C8—H8A	0.97 (2)
1.2233 (19)	C8—H8B	1.01 (2)
1.4738 (19)	C8—H8C	1.03 (2)
1.386 (2)	C9—C10	1.512 (2)
1.391 (2)	С9—Н9А	0.99 (2)
1.394 (2)	С9—Н9В	0.97 (2)
0.96 (2)	C10—H10A	0.97 (2)
1.387 (2)	C10—H10B	0.96 (2)
	1.4468 (11) 1.4531 (11) 1.4709 (11) 1.7865 (14) 1.226 (2) 1.2233 (19) 1.4738 (19) 1.386 (2) 1.391 (2) 1.394 (2) 0.96 (2) 1.387 (2)	1.4468 (11)N2—H1N21.4531 (11)C7—C81.4709 (11)C7—H7A1.7865 (14)C7—H7B1.226 (2)C8—H8A1.2233 (19)C8—H8B1.4738 (19)C8—H8C1.386 (2)C9—C101.391 (2)C9—H9A1.394 (2)C10—H10A0.96 (2)C10—H10B

С3—НЗА	1.015 (19)	C10—H10C	0.92 (3)
C4—C5	1.402 (2)	C11—C12	1.516 (2)
C5—C6	1.388 (2)	C11—H11A	0.943 (18)
С5—Н5А	1.01 (2)	C11—H11B	1.014 (19)
С6—Н6А	0.96 (2)	C12—H12A	0.99 (2)
N2—C9	1.5087 (19)	C12—H12B	0.93 (2)
N2—C7	1.5101 (19)	C12—H12C	0.98 (2)
N2—C11	1.5110 (19)		
03—S1—O5	115.07 (7)	С8—С7—Н7А	113.7 (13)
O3—S1—O4	113.04 (7)	N2—C7—H7B	103.5 (12)
O5—S1—O4	111.77 (7)	С8—С7—Н7В	113.2 (11)
O3—S1—C4	106.18 (6)	H7A—C7—H7B	109.3 (16)
O5—S1—C4	105.13 (6)	С7—С8—Н8А	111.7 (13)
04—S1—C4	104.57 (6)	C7—C8—H8B	112.2 (11)
02-N1-01	123 45 (14)	H8A—C8—H8B	108 7 (16)
02 - N1 - C1	118 27 (14)	C7—C8—H8C	109.8 (11)
01 - N1 - C1	118.28 (14)	H8A - C8 - H8C	113.0 (16)
C_{2} C_{1} C_{6}	123 21 (13)	H8B - C8 - H8C	101.0(17)
$C_2 - C_1 - N_1$	118 25 (14)	N_{2}^{2} C9 C10	113.09(13)
C_{6} C_{1} N_{1}	118 53 (13)	N2_C9_H9A	106.9 (11)
C1 - C2 - C3	117.81 (14)	C10-C9-H9A	100.9(11)
C1 - C2 - H2A	121.8 (11)	N2_C9_H9B	104.5(13)
C_{3} C_{2} H_{2} A	121.0(11) 120.3(11)	C10-C9-H9B	104.3(13) 112.7(12)
C_{1}^{-} C_{2}^{-} C_{2}^{-} C_{2}^{-}	120.31 (13)		112.7(12)
$C_1 = C_2 = C_2$	120.91(13)	$C_{0} = C_{10} = H_{100}$	100.0(10) 107.0(13)
$C_1 = C_2 = H_2 \Lambda$	120.9(11)	C_{9} C_{10} H_{10R}	107.0(13) 112.8(13)
$C_2 = C_3 = \Pi_3 A$	110.0(11) 120.74(12)		112.0(13)
$C_{3} = C_{4} = C_{3}$	120.74(13)	HI0A - CI0 - HI0B	100(2) 112.7(16)
$C_{5} = C_{4} = S_{1}$	119.03 (10)		113.7(10)
C_{3}	119.42 (11)	H10A-C10-H10C	107.3 (19)
$C_0 = C_3 = C_4$	119.73 (14)	N2 C11 C12	110(2)
$C_0 = C_5 = H_5 A$	120.6 (10)	N2 = C11 = U11A	113.80(12)
C4 - C5 - H5A	119.0 (10)	N2-C11-H11A	100.8(11)
C5-C6-C1	118.18 (14)		112.1 (11)
С5—С6—Н6А	119.3 (14)	N2—CII—HIIB	105.6 (10)
CI - CO - HOA	122.6 (14)	CI2—CII—HIIB	108.3 (11)
C9 = N2 = C/	110.01 (12)	HIIA—CII—HIIB	109.9 (15)
C9—N2—C11	113.05 (12)	CII—CI2—HI2A	113.4 (11)
C7—N2—C11	113.83 (11)	СП—С12—Н12В	113.1 (13)
C9—N2—H1N2		H12A—C12—H12B	111.1 (17)
C7—N2—H1N2	103.1 (11)	C11—C12—H12C	109.2 (14)
C11—N2—H1N2	106.2 (11)	H12A—C12—H12C	101.6 (17)
N2—C7—C8	113.10 (12)	H12B—C12—H12C	107.7 (18)
N2C'/H'/A	103.1 (12)		
O2—N1—C1—C2	-176.81 (16)	O5—S1—C4—C5	-38.73 (14)
01—N1—C1—C2	2.8 (2)	O4—S1—C4—C5	79.13 (13)
O2—N1—C1—C6	3.1 (2)	C3—C4—C5—C6	-0.4 (2)
O1—N1—C1—C6	-177.33 (18)	S1—C4—C5—C6	-179.65 (12)
C6—C1—C2—C3	-0.9 (2)	C4—C5—C6—C1	0.3 (2)

supplementary materials

N1—C1—C2—C3	178.93 (14)	C2—C1—C6—C5	0.4 (3)
C1—C2—C3—C4	0.8 (2)	N1—C1—C6—C5	-179.46 (15)
C2—C3—C4—C5	-0.1 (2)	C9—N2—C7—C8	-179.61 (14)
C2—C3—C4—S1	179.10 (11)	C11—N2—C7—C8	52.33 (18)
O3—S1—C4—C3	19.67 (13)	C7—N2—C9—C10	154.66 (14)
O5—S1—C4—C3	142.05 (12)	C11—N2—C9—C10	-76.86 (17)
O4—S1—C4—C3	-100.09 (12)	C9—N2—C11—C12	-66.52 (16)
O3—S1—C4—C5	-161.10 (12)	C7—N2—C11—C12	59.96 (17)

Hydrogen-bond geometry (Å, °)

D—H…4	<i>D</i> —Н	H…4	$D \cdots A$	D—H…4
		1.0((2))	2 7000 (17)	
N2—H1N2····O4	0.95 (2)	1.86 (2)	2.7899 (17)	166 (2)
C2—H2A···O5 ⁱ	0.96 (2)	2.485 (19)	3.1000 (19)	121.7 (14)
C7—H7B···O4 ⁱⁱ	1.00 (2)	2.50 (2)	3.4081 (19)	151.3 (16)
C10—H10B····O3 ⁱⁱⁱ	0.96 (2)	2.59 (2)	3.461 (2)	151.1 (18)
C12—H12A····O5 ⁱⁱⁱ	0.99 (2)	2.60 (2)	3.559 (2)	164.1 (16)

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) -x+3/2, y+1/2, z; (iii) x+1, y, z.

Fig. 1

Fig. 2

